This book has permission to use the "N&K method of COLORS".

- 10) Question: In the function $f(x) = bx^2 + 15$, "b" is a constant. If "f(3) = 33", find the value of f(5).
- A) 65 changed
- B) 70
- C) 75
- D) 80

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.

Solution:

Given 1)
$$f(x) = bx^2 + 15$$

$$f(3) = 33$$

Find

$$f(5) = ?$$

Road Map of Solution:

First, Using the given statements, 1 & 2, find the value of "b".

Second. To find the value of f(5); substitute—the value of "b" and "x = 5" in the given first statement.

Given

1st statement
$$f(x) = bx^2 + 15$$
 equation # 1
2nd statement $f(3) = 33$ equation # 2

Solving eq # 1 for "x = 3", we get

$$f(x) = bx^2 + 15$$

$$f(x) = b(\mathbf{m})^2 + 15$$

$$f(3) = b(3)^2 + 15$$

$$f(3) = b(9) + 15$$

Substituting f(3) = 33 in the equation above, we get,

$$33 = b(9) + 15$$

$$-15 + {33} = {b(9) + 15}$$

 $-15 + 33 = b(9) + 15 - 15$

 $18 = b(9) \qquad \qquad \dots \qquad equation \# 3$

Multiplying both sides of the equation # 3 with

$$\binom{1}{9} \times \{18\} = \{b(9)\} \times \binom{1}{9}$$

$$\left(\frac{1}{9}\right) \times \left\{18\right\} = \left\{b\left(\frac{9}{9}\right)\right\} \times \left(\frac{1}{9}\right)$$

$$\binom{1}{1} \times \{2\} = \{b(1)\} \times \binom{1}{1}$$

$$\binom{-1}{1} \times \binom{2}{1} = \{b(1)\} \times \binom{-1}{1}$$

 $\binom{1}{1} \times \binom{2}{1} = \{b(1)\} \times \binom{1}{1}$

$$\{2\} = \{b(1)\}\$$

$$\{2\} = \{b\}$$

 $\{2\} = \{b\}$ equation #3c

From eq#s 1 & 3c, we get,

$$f(x) = bx^2 + 15$$

$$f(x) = (b)(x)^2 + 15$$

$$f(5) = (2)(5)^2 + 15$$

$$f(5) = (2)(25) + 15$$

$$f(5) = 50 + 15$$

$$f(5) = 65$$
 Answer (A)