This book has permission to use the "N&K method of COLORS".

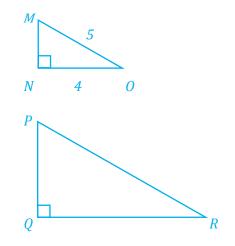
Example: Question: In a right triangle MNO, $\angle N$ is 90°, NO is 4 units long and MO is 5 units long. Triangle PQR is similar to triangle MNO. The vertices P, Q & R correspond to M, N & O respectively. Each side of PQR is two times as long as the sides in triangle MNO. Find the value of cos QPR?

A) 4

B) -4

- C) 16
- D) -16

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.


Given: 1) A right triangle MNO, in which $\angle N$ is 90°, NO is 4 units long and MO is 5 units long

- *2) Triangle PQR is similar to MNO.*
- *3)* The vertices P, Q & R correspond to M, N & O respectively.
- 4) Each side of PQR is two times as long as the sides in triangle MNO.

Solve: Find the value of cos QPR?

Road Map of Solution:

First Step: Draw a rough sketch of the two triangles, MNO & PQR. Second Step: Find MN using Pythagorean theorem. Third Step: Since the tringles are similar, i.e. Cos QPR = Cos NMO Fourth Step: Solve.

Based on Pythagorean theorem, in triangle MNO,

<i>MO</i> ²	=	$MN^2 + NO^2$
5 ²	=	$MN^2 + 4^2$
25	=	$MN^{2} + 16$
25 <mark>- 1</mark> (=	$MN^2 + \frac{16}{-1}$
9	=	MN^2
3 ²	=	MN^2
3	=	MN

-book-20190424-1941--pwd-toOpen-ZZ02-toModify-XXXYYYZZ02.doc

Since the triangles MNO & PQR are similar, the ratios of their sides will also be similar. Therefore,

 $Cos QPR = Cos NMO = \frac{adjacent}{hypotenuse} = \frac{MN}{MO} = \frac{3}{5}$ Answer.

<u>TOC</u>